Ligand placement based on prior structures: the guided ligand-replacement method
نویسندگان
چکیده
The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR leverages prior knowledge from earlier structures to facilitate ligand placement in the current structure.
منابع مشابه
Solid-phase Extraction Using Modified Carbon Nanotube and Cupferron Ligand for Preconcentration and Determination of Trace Amounts of Copper in Real Samples
A solid phase extraction procedure for simultaneous separation and preconcentration of traceamounts of Cu+2 ion from various real samples prior to its determination by flame atomicabsorption spectrometry has been developed. The proposed method is based on the utilization ofmultiwalled carbon nanotube in combination with Cupferron ligand as a solid phaseextractant. The influences of the analytic...
متن کاملDevelopment of a new method based on chiral ligand-exchange chromatography for the enantioseparation of propranolol
A new chromatographic procedure was proposed for the separation of propranolol (PRN) enantiomers based upon enantioselective chiral ligand-exchange chromatography. The separation was carried out on a short C8 column leading to considerably short separation time. L-alanine and Cu2+ were applied as chiral selector and central bivalent complexing ion, respectively. It was found that the kind of co...
متن کاملDevelopment of a new method based on chiral ligand-exchange chromatography for the enantioseparation of propranolol
A new chromatographic procedure was proposed for the separation of propranolol (PRN) enantiomers based upon enantioselective chiral ligand-exchange chromatography. The separation was carried out on a short C8 column leading to considerably short separation time. L-alanine and Cu2+ were applied as chiral selector and central bivalent complexing ion, respectively. It was found that the kind of co...
متن کاملDetermination of trace amounts of chromium ions in water and food samples using ligand-less solid phase extraction-based modified nano-boehmite(AlOOH)
Chromium is one of the hazardous pollutants in industrial effluents. In this study, a new nano-boehmite modified with sodium dodecyl sulphate is developed for preconcentration trace amounts of chromium ions as a prior step to its determination by flame atomic absorption spectrometry. We investigated the effect of various parameters on the recovery of the analyte ions, including pH of sample solut...
متن کاملDesign and Fabrication of PVC Membrane Electrode Based on Netural Ligand (E)-N'-(1-(2-Hydroxyphenyl)Ethylidene)Benzohydrazi for Teramadol hydrochloride Measurement in Drugs and Biological Fluids
Here, a simple, quick, Low cost and sensitive Potentiometric method is described for tramadol hydrochloride measurement using .PVC membrane electrode based on neutral ligand (E)-N'-(1-(2-hydroxyphenyl)ethylidene)benzohydrazid. Besides, effect of various parameters like ionic additives, membrane solvent and pH on the Potentiometric response of the electrode are investigated. The best electrode p...
متن کامل